Formal Architectural Patterns
for Adaptive Robotic Software

James Baxter![0000-0001-6083-9607) Bert van Acker2[0000-0002-3854-5159]
3(0009— 000884677567 30000~ 000180350884
Morten Kristensen?! I, Thomas Wright?! 1,
+1[0000—0002—0831—1976 3[0000—0003—2692—9742
Ana Cavalcanti'l I and Claudio Gomes?!]

L University of York, UK
2 University of Antwerp, Belgium
3 Aarhus University, Denmark

Abstract. It is often the case that a robot must adapt to unexpected
changes in its environment. It is, however, important that these changes
can be demonstrated to maintain the safe operation of the robot. The
adaptive systems community has developed the MAPE-K pattern as a
widely recognised conceptual architecture. We propose extending MAPE-
K to incorporate runtime verification, resulting in an architecture we call
MAPLE-K. In this paper, we capture and formalise both the MAPE-K
and MAPLE-K architectures using a domain-specific language. Addi-
tionally, we provide support for translation from architectural models to
software models and code to facilitate the deployment of verified applica-
tions. MAPE-K is rarely maintained at the implementation level, but our
work ensures traceability between the code and its design, enabling the
use of architectural information to verify the correctness of the software.

Keywords: adaptive systems - robotics - formal modelling

1 Introduction

It is essential that robots behave safely, as they can cause damage to property or
harm to humans nearby. A particular challenge is the possibility of unexpected
changes in the environment. These may include the appearance of obstacles,
sensor readings outside the range the robot can handle, or changes to the robot’s
body, such as failures. In all these cases, the robot must be able to adapt in a
way that maintains safe and effective operation wherever possible.

The most common pattern for the development of software capable of adapt-
ing to unexpected changes is the MAPE-K architecture, where the system is over-
seen by a manager component. A widely accepted view of MAPE-K is that the
manager proceeds in a cycle of four steps: monitoring inputs to detect anomalies;
analysing the anomaly to determine its nature; planning to adapt the system;
and executing the plan by signalling to the managed system to implement it.
These four components form the “MAPE” of the MAPE-K, pattern and they are
supported by a Knowledge Base (the “K”), through which information is shared
between steps and across iterations of the cycle.

2 J. Baxter et al.

In the RoboSAPIENS project [I8], we propose an extension of MAPE-K
called MAPLE-K, which incorporates an additional legitimisation step to en-
sure that adaptations maintain the safe operation of the robot. This extra step
checks that the plan produced (in the planning step) is safe before it is executed.
It is useful to have legitimisation as a separate step, since safety cannot always
be guaranteed during the formulation of the plan. In particular, neural networks
may be used in the analysis or planning steps for greater adaptability, but neu-
ral networks cannot always ensure compliance with safety requirements so the
legitimisation cannot be performed by a neural network. It is thus important
that the planning and legitimisation steps be considered separately, since they
may adopt different approaches. The planning step may also itself be adapted
by a further MAPE-K or MAPLE-K component, whereas safety requirements
would not permit the legitimate step to be adapted.

Additionally, we propose that the conceptual elements of MAPLE-K should
also be applied at the implementation level. While MAPE-K is widely used to
plan the structure of software, the pattern is often not reflected in the imple-
mentation. This jeopardises traceability between the deployment and the design
of the code and hinders the compositional verification of adaptations.

This loss of traceability can be avoided through a Model-Driven Engineer-
ing (MDE) approach, where architectural patterns are reflected in system mod-
els, which form the basis for implementation. The connection is strengthened by
automated transformation from the model to code.

The RoboStar framework [11] is a family of domain-specific languages for
robotics, with support for verification via automated generation of formal seman-
tics from models. In particular, RoboChart is used to describe software designs.
RoboChart [19] models represent software components and their connections, de-
scribing behaviour via timed state machines or neural networks. Through trans-
formation, RoboChart models can be validated and converted into code.

Another RoboStar language, RoboArch [7], supports the modelling of ar-
chitectural designs. RoboArch embeds a layered approach to software architec-
ture and allows the definition of layers using patterns that describe their inter-
nal structure. Automatic translation from RoboArch architectural models into
RoboChart sketches ensures that architectural designs are reflected in the de-
sign models, from which formal verification and code generation are possible.
The translation formalises the RoboArch architectural models.

Architecture and Analysis Description Language (AADL) [BII3] provides
standardized notations for specifying hardware and software components of a
system and their interactions. It can be used to describe the architecture in the
detail required for deployment as well as its implementation.

In the work presented here, we propose the process for the development of
robotic software shown in Fig. [T} A developer starts with a high-level model of
the architecture of a system in RoboArch and generates a corresponding sketch
in RoboChart, possibly enriching it with application-specific logic. This provides
support for formal verification of the architecture. We then propose an approach
to transform the RoboChart model into a corresponding AADL model, enabling

Formal Architectural Patterns for Adaptive Robotic Software 3

o Model
Specification *

RoboArch model RoboChart model
||

Application-specific
components

4

0.,

=

transformation <

-\ &
Completed
RoboChart model AADL model
n |
Formal

verification Code generation

v v

Code
generation Code
Verified

RoboChart model

Fig. 1: RoboChart and AADL model-based development process

the development of a deployment model, annotating it with deployment-specific
properties, and generating code skeletons for the interface and infrastructure
code of each component. Using the code skeletons, the behaviour (the “appli-
cation code”) can be written in the chosen programming language or obtained
automatically from RoboChart as well. The auto-generated code skeletons are
aligned with the AADL/RoboArch architectures, ensuring that throughout this
process the MAPLE-K loop itself, and particularly the Legitimate component,
can be modelled, verified, and maintained all the way down to the code level.
In this case, legitimisation can take advantage of the high-level structure of
the RoboArch model to reason about the adaptations. Although our approach
makes use of the particular notations of RoboArch, RoboChart and AADL, it
demonstrates this more general process for development of software following
a MAPLE-K pattern, transforming from higher-level specification notations to
lower-level models and code.

In this paper, we contribute to the design of open-ended self-adaptive systems
that require certification by presenting extensions of RoboArch and AADL to
capture MAPLE-K architectures, with the traditional MAPE-K architecture as
a special case. We also present a mapping from RoboChart to AADL, allowing a
RoboArch and RoboChart design architecture to be translated into deployment.
We demonstrate our approach using a robot that navigates through a space,
avoiding obstacles, and adapting to faults and occlusions in its LiDAR sensor.

Next, in Section [2] we discuss related work on modelling MAPE-K. In Sec-
tion [3] we describe RoboArch, RoboChart, and AADL. We present our model

4 J. Baxter et al.

of MAPLE-K in RoboArch and RoboChart in Section [l and in AADL in Sec-
tion [f] We then discuss our mapping from RoboChart to AADL in Section [f]
Our example is the subject of Section [7} Finally, we conclude in Section [§

2 Related Work

The MAPE-K conceptual architecture was first introduced by IBM, as outlined
in the seminal work of Kephart et al. [I7] and further detailed in [16]. Over the
years, several variations have been proposed [4J2019/6].

In the context of MDE, several works align with our goal of formalising ar-
chitectures based on MAPE-K loops, albeit with very different approaches and
applications. For instance, Arcaini et al. [4] model self-adaptive systems as multi-
agent systems, representing both the managed system and the managing sub-
system as interacting agents. Their model utilises multi-agent ASMs (Abstract
State Machines) within the ASMETA framework[I], which supports formal tech-
niques for validating and verifying adaptation scenarios. This approach provides
feedback on the correctness of adaptation logic during system design.

Camilli et al. [I0] introduce a formal framework for modelling and analysing
self-adaptive systems with decentralised adaptation control using Petri nets.
Their framework supports the validation and verification of the MAPE-K com-
ponents, demonstrated through a self-optimising cluster management system.

Finally, Weyns et al. [22] contribute an end-to-end approach for engineering
self-adaptive systems, addressing design, deployment, runtime adaptation, and
evolution. Their tool uses timed automata and runtime statistical model check-
ing, validated through an IoT application. The approach provides: correctness
guarantees for the feedback loop with respect to properties preserved through-
out the execution of formally verified models; efficient selection of adaptation
options that meet accuracy and confidence requirements; and support for on-
the-fly changes to adaptation goals and updates to verified models.

What distinguishes our work is the creation of a pathway from high-level,
albeit formal, descriptions of architectures based on MAPLE-K to deployment
architectures. In this way, developers can: (1) describe architectures using ac-
cessible notation; (2) verify properties, potentially involving timing; and (3) use
the same architecture for deployment, preserving both properties and structure.

3 Preliminaries

In this section, we first present RoboArch and its translation to RoboChart in
Section Afterwards, in Section we describe AADL.

3.1 RoboArch and RoboChart

Asnoted, RoboArch architectures are layered, a structure widely used in robotics.
These layered architectures usually have a control layer at the lowest level, com-
municating directly with the robot, followed by an executive layer, which carries

Formal Architectural Patterns for Adaptive Robotic Software 5

system ObstacleAvoidance layer Application {
inputs= eventReply:Events,
datatype Velocities { outputs= activate:Skills, deactivate:Skills, ...;
linear:real 5
angular:real layer MoveAndSense: ControlLayer {
} requires Motors

uses Sense
interface Motors {
move (vel: Velocities) inputs= activate:Skills, deactivate:Skills, ...;
} outputs= eventReply:Events,
pattern= ReactiveSkills;
interface Sense {

event proximity: int s
}
connections=
robotic platform PuckRobot { Application on activate to MoveAndSense on activate,
provides Motors Application on deactivate to MoveAndSense on deactivate,
uses Sense o
} MoveAndSense on eventReply to Application on eventReply,

MoveAndSense on activeSkills to Application on activeSkills,

PuckRobot on proximity to MoveAndSense on proximity;

Fig.2: An example of a RoboArch model

out sequences of actions, and a planning layer at the highest level, which makes
high-level decisions. Each layer can have a pattern describing its internal ar-
chitecture, and uses events and operations to communicate with other layers
and the robot. We describe RoboArch via the example of an obstacle avoid-
ance robot. In Fig. 2] we describe the architecture of its software as a system
called ObstacleAvoidance. We note that RoboArch is a textual language. Fu-
ture work could define a graphical notation for RoboArch as a profile of SysML
block diagrams.

RoboArch uses the type system of the formal modelling notation Z [23]. New
types can be declared to be used in specifying the data flow in the architecture.
Here, we define a record datatype Velocities, with two real fields.

RoboArch distinguishes communication between layers and communication
with the robot. Communication between layers uses input and output events
only. Communication with the robot is specified by a robotic platform, declar-
ing (via interfaces) events and operations that describe services of the platform
used by the software. A RoboArch architecture is platform independent. Here,
we declare two interfaces: Motors, defining an operation, and Sense, defining
an event. These are declared in a robotic platform PuckRobot. With the uses
keyword we indicate that the platform has points of interaction via the events
of the declared interface. Operations, on the other hand, are services provided
by the platform, so the provides keyword declares interfaces with operations.
Events may be inputs, outputs, or both, depending on the the robotic firmware
and APL

The declaration of each layer may give a pre-defined type: a ControlLayer,
Executivelayer or Planninglayer, each with its own restrictions following
a commonly used architectural definition. A layer without a type is generic,
allowing alternative structures to be defined. Here, we define two layers: a generic
layer called Application, and a ControlLayer, called MoveAndSense.

6 J. Baxter et al.

Each layer declares inputs and outputs: events that may have types, such as
Skills and Events (both of which come from the layer’s pattern). A ControlLayer
additionally uses or requires the same interfaces as the robotic platform, since
it is intended to coordinate communication with the robot.

A layer can have a pattern. In our example, MoveAndSense uses the pat-
tern ReactiveSkills [§]. Declaration of a pattern establishes the additional
information required to specify the architecture. We omit details in Fig. 2

After the layers, connections are defined between the events of the layers
and robotic platform, ensuring a strict layering discipline is maintained. For
example, here the activate and deactivate outputs for the Application layer
are connected to the corresponding inputs in the MoveAndSense layer to activate
and deactivate skills. Similarly, the proximity event from the PuckRobot robotic
platform is connected to the MoveAndSense layer.

RoboChart, in contrast to RoboArch, is a diagrammatic notation for software
design, and gives semantics to RoboArch. A RoboChart model is a module,
containing a robotic platform declaring variables, operations and events, and
one or more controllers, with connections between their events. A controller
in turn either contains one or more state machines describing its behaviour,
or is defined by an artificial neural network, and may require interfaces from
the robotic platform or declare local variables and operations. Fig. [6] shows an
example of a RoboChart controller containing several state machines. A state
machine, such as the one shown in Fig. [8] defines states and transitions between
them, and may also declare local variables or require interfaces. Each state can
have statements it executes, and may also have nested states and transitions. In
addition to modules, controllers and state machines, a RoboChart model may
also define types and interfaces, such as those in Fig. [l We describe further
features of RoboChart used in models generated from RoboArch as needed. A
full account of RoboChart can be found in [19].

3.2 AADL

AADL is a prominent language for MDE that provides standardized notations
for specifying the architectural representation of a system. A supporting toolkit,
Open Source Architectural Tool Environment (OSATE) [12], is available. It is
an industry standard under the Society of Automotive Engineering (SAE).

AADL is a highly extensible language which allows for enhancing models with
additional details through a set of standard properties and annexes. Properties
refine component definitions and establish hierarchical connections across the
system. Larger, more specialized extensions are defined in separate annexes.

RA2DL (Reconfiguration Architecture Analysis and Design Language) [3] is
an extension of AADL designed to address the challenges of dynamic reconfigura-
tion in system architectures. Unlike standard AADL, which focuses on modeling
static architectures, RA2DL introduces constructs for handling reconfigurable
components, allowing systems to adapt at runtime.

Research by [14] has shown how AADL can be combined with UPPAAL to
verify timing constraints. The work in [I5] presents the formal verification of

Formal Architectural Patterns for Adaptive Robotic Software 7

[system —_—
Layer Pattern
& imports : Import B tay H
£ definitions : TypeDecl | &3 inputs : Event [0..1] pattern
= functions : Function k1.4 layers 53 outputs:iEvent [0..1] pattern
= robot : RoboticPlatform [AY :
. [0..1] monitor
£ interfaces : Interface
3 connections : Connection
[0..1] execute [] MAPLEK | [MonitorComponent |
[0..1] legitimate | = timeout : Ent §3 recordedData : Variable
Lol processedDataType : Type
[0..1] plan I T[O,.l] analyse
| [ExecuteComponent | | [LegitimateComponent | | [PlanComponent | E AnalyseComponent |
l 52 verificationinfo : Variable &3 planData : Variable I =2 analysisResults : Variable |
' [0..1] pattern ?[0..1] pattern ? [0..1] pattern ? [0..1] pattern

Fig. 3: Part of the RoboArch metamodel showing the MAPLE-K pattern

safety and liveness properties of an AADL model by transformation to Event-B.
We carry out verification at the more abstract RoboArch and RoboChart levels,
and use transformation to AADL to ensure properties are preserved.

4 MAPLE-K in RoboArch

Here, we present our extension of RoboArch to support MAPE-K and MAPLE-K
architectures (Section [4.1), and give its semantics in RoboChart (Section [4.2).

4.1 Metamodel and well-formedness conditions

We have extended the RoboArch metamodel to introduce a pattern for MAPLE-
K flexible enough to handle several variations, including the standard MAPE-K
pattern. Fig. [3| shows the metamodel for the new pattern for MAPLE-K.

The top level of a RoboArch architecture is an instance of the class System
in Fig.[3| It has one or more layers: instances of Layer. A layer may have a pattern
represented by a subclass of Pattern. MAPLEK is our new subclass, which can
be used for a PlanningLayer set above the layers of the managed system.

MAPLEK has components representing each of the five steps of the MAPLE-K
loop: monitor, analyse, plan, legitimate and execute, each with its own type: Mon-
itorComponent, AnalyseComponent, PlanComponent, LegitimateComponent and
ExecuteComponent. These components are optional, leading to variations on the
pattern. For example, omitting the monitor is a common variation where anal-
ysis is performed on raw input data from the managed system. Omitting the
legitimate component yields the traditional MAPE-K pattern.

The inputs of the Layer from the managed system in the layer below are
connected to the monitor component. Similarly, the outputs of the Layer are the
outputs from the execute component to the managed system.

8 J. Baxter et al.

MK1 A Layer that has a pattern of type MAPLEK must be a GenericLayer
or PlanningLayer.

MK?2 An instance MAPLEK must have at least one of the components mon-
itor, analyse, plan, execute.

MKS3 If an instance of MAPLEK has a legitimate component, then it must
have plan and execute components.

Fig. 4: The well-formedness conditions for MAPLEK

Each of the components has its own parameters, and can have their own
pattern, allowing further variations on a MAPLE-K pattern to be defined. All
of the components, except ExecuteComponent, have attributes recording a list of
declarations for Variables within the knowledge base to which they can write. For
MonitorComponent, these variables, in recordedData, record the monitored data.
AnalyseComponent records analysisResults with information computed from the
analysis that needs to be used in the plan or legitimate components. PlanCompo-
nent records planData, with information on the plan created, such as configura-
tion values or a series of commands. LegitimateComponent records verificationInfo,
giving an account of why a plan did or did not pass verification; such information
can be used in replanning or passed as part of execution of the plan.

MonitorComponent also contains a type declaration processedDataType, indi-
cating the type of the data output from the monitor to the analyse component.
This may, for example, collect inputs from the managed system (possibly re-
ceived at different times), or result from a filtering or error correcting operation.

In addition to its metamodel, RoboArch has well-formedness conditions that
identify valid instances of its metamodel. These conditions further formalise the
architectures captured in the metamodel, for which we can provide a formal
semantics. A full account of existing well-formedness conditions is in [7]. For a
MAPLEK pattern, the extra well-formedness conditions are shown in Fig. [4

MK1 restricts the types of layer that can use a MAPLEK pattern, since
MAPLE-K is intended to go above the layers of the managed system and Plan-
ninglLayers are the topmost layer types. By allowing for a GenericLayer to use
MAPLEK, however, we cater for its use in an architecture where, for instance,
we just separate the MAPLE-K loop and the managed system.

MK2 and MK3 restrict the components that can be omitted. MK2 ensures
that there is at least one component to handle the inputs and outputs. We note
that legitimate is not included in MK2, since it must receive a plan, reporting
back if it is rejected or accepted. MK3 captures this by requiring plan and
execute components to be defined whenever legitimate is.

The metamodel for RoboArch underlies its textual representation shown in
Fig. 2 We have defined a textual representation for the new MAPLEK pattern,
an example of which can be seen in Fig. [5] which shows a layer of the application
discussed later in Section[7} with the types it uses. It declares datatypes for each
of the types used for the input and output events of the layer, and then declares
the Adaptation layer, which declares its pattern as MAPLE-K.

Formal Architectural Patterns for Adaptive Robotic Software 9

datatype SpinConfig {

commands: Seq(SpinCommand) layer Adaptation : PlanningLayer {
period: int inputs = lidarData : LidarRange;
} outputs = spinConfig : SpinConfig;
pattern = MAPLE-K;
datatype SpinCommand { monitor {
angleVelocity: real processed_data_type = LidarRange;
duration: real recorded_data = lidarScans : Seq(LidarRange);
¥ ¥
analyse {
datatype LidarRange { analysis_results =
S boolLidarMasks : Seq(BoolLidarMask),
} probLidarMasks : Seq(ProbLidarMask);
}
datatype BoolLidarMask { plan {
values: Seq(boolean) plan_data = directions: Seq(SpinCommand);

baseAngle: real
} legitimate {
¥
datatype ProbLidarMask { execute {
values: Seq(real)
baseAngle: real };
}

Fig.5: An example of of a MAPLE-K pattern in a RoboArch model

With the definition of MAPLE-K as a pattern, the components of a MAPLE-K
loop can be declared in their own blocks within the layer. The monitor com-
ponent specifies a processed_data_type, corresponding to processedDataType
in the metamodel, and declares a list of recorded_data variables, correspond-
ing to recordedData in the metamodel. Similarly, analyse declares a list of
analysis_results variables, and plan declares a list of plan_data variables.
For the legitimate component, no variables are required in this example since
this application uses a default safe plan if the legitimate rejects the original
plan. The component execute declares no variables (although it may have its
own Pattern), but it is included because it does need to be implemented.

Definition of additional patterns for each of the components is ongoing work.

4.2 Formalisation in RoboChart

As noted, RoboArch models can be automatically translated to a sketch of a
RoboChart model; each layer is translated to a RoboChart controller. The meta-
model and well-formedness conditions formalise the structural aspects of the
architecture. The translation to RoboChart formalises the behavioural aspects.

To give an overview of how we capture the behaviour of a MAPLE-K architec-
ture, and, in particular, when all components are present, we show in Fig. [6] the
controller for the MAPLEK layer Adaptation in Fig. |5l As shown, each MAPLEK
component is represented by a state machine. The connections between them re-
flect the control flow of the MAPLE-K loop, with the types of the events based
on the types of the Variables, in the pattern definitions. The definitions of the
state machine capture the control flow of its associated component.

The six state machines of the Adaptation controller are included by reference
and explained in the sequel. The state machine named Monitor receives inputs
from the managed system and sends on processed data via an event processed-
Data. The inputs are those declared in the RoboArch model, in this case lidarData

10 J. Baxter et al.

o Adaptation

(@ Adaptation_Inputs

(@ Adaptation_Outputs

(@ Adaptation_RecordedData
@Adaptation AnalysisResults

(@ Adaptation_PlanData

(@ Adaptation_VerificationInfo

(D Adaptation_RecordedData_events
@Adaptat\oniAna\ys\sResu\tsievents
() Adaptation_PlanData_events

(D Adaptation_VerificationInfo_events

processedData: LidarRange

grefstm_refl =
< Analyse

| IanomaIyFound | l_

| 3 ref stm_ref2 = Plal
T

requestPlan plan

adaptationCompleted
processedDafa: LidarRange

—grefstm_ref0 =
- Monitor

lidarData: LidarRange

-

boolLidarMasks: Seq(BoolLidarMask)

ningCompleted

verifyPlan

_grefstm_ref3 =
© Legitimate

planAccepted

planRejected

executePlan

L _orefstm_refd =
4% Execute

adaptationCompleted]

spinConfig: SpinConfig|

.
|

i
43 refstm_ref5 = Ki
lidarScans: Seq(LidarRange) directions: Seq(SpinCommand)
i i

probLidarMasks: Seq(ProbLidarMask)

i
I I boollidarMasks: Seq(BoolLidarMask) I I I

I I IprobLidarMasks:Seq(ProbLidarMask)I I

lidarData: LidarRange lidarScans: Seq(LidarRange) directions: Seq(SpinCommand) spinConfig: SpinConfig

Fig. 6: The RoboChart controller generated for the Adaptation layer in Fig.

of type LidarRange, representing data from a lidar device detecting objects in the
surroundings. The processedData event also has the type LidarRange, since that
is the processed_data_type provided in Fig. [5l

Analyse receives the processedData from Monitor and analyses it, signalling
via an anomalyFound event if an anomaly is found. This event is connected to
the requestPlan event of the state machine, Plan.

The Plan state machine creates a plan to adapt to the anomaly, and signals to
the Legitimate state machine on the planningCompleted event. Legitimate receives
the planningCompleted event as the verifyPlan event, and performs verification
and validation on the plan, signalling either planRejected back to the Plan state
machine or planAccepted to the machine for the Execute component.

Execute receives planAccepted via executePlan and communicates with the
managed system via output events, signalling via adaptationCompleted when it
has finished. As with the input events, the output events are those declared in
the RoboArch model: spinConfig of type SpinConfig, representing instructions for
the robot to rotate as it moves to mitigate against occlusions of the LiDAR.

The knowledge base itself is represented as variables in interfaces and shared
among the controller’s state machines. In RoboChart, controllers and state ma-
chines declare the variables that they use. The declarations of the interfaces for
Adaptation are the top of its block in Fig. [6] and their definitions are in Fig.

The name of each interface is prefixed with the name of the controller, to
ensure the names are unique when there is more than one MAPLE-K layer.
The first two of interfaces, Adaptation Inputs and Adaptation Outputs, define
the input and output events, lidarData and spinConfig in our case. The next
four interfaces (RecordedData, AnalysisResults, PlanData, VerificationInfo) declare
variables that form the knowledge base. The definition of each interface comes

Formal Architectural Patterns for Adaptive Robotic Software 11

Adaptation_VerificationInfo

[TJ LidarRange [T, spinConfig | Adaptation_Inputs | | Adaptation_RecordedData ‘
angleMin: real commands: Seq(SpinCommand) | | lidarData: LidarRange | [lidarScans: seq(LidarRange) |
angleMax: real period: int
angleIncrement: real —— | Adaptation_Outputs | Adaptation_AnalysisResults

.) SpinCommand — - - -
timeIncrement: real # spinConfig: SpinConfig| | X boolLidarMasks: Seq(BoolLidarMask)
rangeMin: real angleVelocity: real X probLidarMasks: Seq(ProbLidarMask)
rangeMax: real duration: real
scanTime: real — N | Adaptation_PlanData ‘
ranges: Seq(real ©, ProbLidarMask

ges: Seq(real) |Xdirect\'ons:Seq(SpinCommand) ‘
intensities: Seq(real) values: Seq(real)
]

baseAngle: real |

[T BoolLidarMask

values: Seq(boolean)
baseAngle: real

Fig. 7: The RoboChart interfaces and types generated for the example in Fig.

dLegitimate

® Adaptation_PlanData

® Adaptation_AnalysisResults
® Adaptation_RecordedData
® Adaptation_VerificationInfo
X planLegitimated: boolean

. Initialise
i

[]planRejected

verifyPlan E

—J

verifyPlan

[not planLegitimated]/planRejected | performverification| [PlanLegitimated]/planAccepted Fplanl\ccepted

—

Fig.8: An example of the Legitimate state machine generated for Fig.

from the variables in the components of the RoboArch model. VerificationInfo
contains no variables, since the legitimate block in Fig. [f] contains no variables.
Fig. [7] also shows the type definitions on the left.

The machine Knowledge communicates values from the knowledge base to the
managed system. This supports an enhancement to the MAPLE-K architecture,
where the managed system, or an extra layer between the MAPLEK layer and
the managed system, performs additional validation of the outputs passed to
it using data from the knowledge base. This is a trustworthiness checker. The
final four interfaces declared in the controller Adaptation declare events for each
variable. Their simple definitions are omitted here, the full model is in [2].

As an example of one of the state machines generated for the MAPLEK pat-
tern, we present Legitimate for our example in Fig.|8| At the top, the declarations
of interfaces indicate that Legitimate requires all variables of the controller. It
needs access to the PlanData to check if it is safe, the RecordedData and Analy-
sisResults as supporting data for its checks, and the VerificationInfo to store more
details on the outcome of the checks. Legitimate also declares a local boolean
variable planLegitimated used to indicate whether the checks are successful.

The body of a state machine automatically generated from a RoboArch model
consists of a set of states and transitions between them that give the skeleton of
the state machine that the developer can extend with application-specific guards

12 J. Baxter et al.

and actions. Each state can contain statements or a nested state machine, so such
additions can be made without changing its structure.

The initial junction (black circle with an i) indicates Initialise as the initial
state of Legitimate, where any required initialisation can be performed, and then
enters a state WaitForSignal, where it waits for a verifyPlan event. After it occurs,
Legitimate enters PerformVerification, where application-specific verification and
validation are performed, with the verdict recorded in planLegitimated.

This variable is used in the guards of the transitions out of PerformVerification.
If planLegitimated is true, planAccepted is output to signal the plan is accepted
and can begin being executed. Otherwise, planRejected is output, to signal that
a new plan should be created to replace it. In either case, Legitimate enters
WaitForSignal afterwards, waiting for the next request to verify a plan.

The control flow just described embeds a parallel execution of the MAPLE-K
components. It is possible to analyse for a new anomaly while one is already being
handled. The definition of Analyse allows application-specific logic to choose
what to do with new data that comes from the monitor. Plan can also use a
new anomaly coming in (disregarding the legitimate result for any plan already
sent for verification). An alternative semantics defines a sequential behavioural
model. In this version, events of one machine are used to trigger another, which
provides for compositional reasoning since each state machine can be considered
separately. The less complex sequential semantics may be sufficient for simpler
systems, so offering both is beneficial.

The RoboArch and even the RoboChart models give a high-level account of
MAPLE-K. Next, we describe our realisation model of MAPLE-K in AADL.

5 MAPLE-K in AADL

The primary goal of our AADL models is to generate software skeletons for each
of the MAPLE-K components, ensuring they conform to the RoboArch archi-
tecture. This guarantees compatibility with our implementation of an adaptive
platform providing data storage and communication services, for example, while
preserving the MAPLE-K pattern throughout the implementation.

The MAPLE-K pattern is modeled as a constellation of components commu-
nicating via the knowledge component through messages. Every component is
modeled as an AADL process, defining its inputs and outputs, and its platform-
independent implementation where its internal structure is defined. Messages
passed between components are modeled using AADL ports.

An AADL thread is used to model any internal (user) functions (that is,
callback). The model of a component also contains a state machine, modeled as
AADL modes and mode transitions. For each element (that is, threads, subpro-
grams, connections, ports, and so on) it is possible to define in which mode it
is active, defining a specific workflow (that is, initialisation procedure and in-
ternal function activation). In AADL each transition has to be triggered by the
occurrence of an event (that is, when a new message is received).

Formal Architectural Patterns for Adaptive Robotic Software 13

|
LogicalArchitecture:-legitimate .impl

WailForSignal

PerformVerification_impl.planRejected PerformVerification_impl.planAccepted
verifyPlan
verifyPlan I
i PerformVerification
! WaitForSignal_impl* ," ’/ Initialise_impl* 7
i

i
’ initialisationDone

‘1' PerformVerification_impl*

i

H pIanAccepIed" planAccepted
i

B I —

~—ad

i
'
lan planRejected planRejected

i

Fig.9: Graphical representation of the Legitimate component in AADL

A graphical representation of the Legitimate componemﬂ shown in Fig. E[,
presents its state machine with its states and transitions, represented as AADL
modes (hexagons) and mode transitions (arrows). Additionally, an AADL thread
(dotted parallelogram) is included, which is executed within the corresponding
state. For instance, in the PerformVerification state, the PerformVerification _impl
thread is executed. The internal and external interface ports of the Legitimate
component, whether event- or data-based, are depicted as AADL event (open
arrows) ports and AADL event data (open filled arrows) ports.

As mentioned before, the global structure of AADL models is generated from
the RoboChart models arising from RoboArch architectures, providing a founda-
tional description for system design. Users, however, have the flexibility to extend
these models. They can add threads to handle aspects of the deployment.

Before code generation from our AADL models, we need to specify how the
software is deployed on the hardware. Fig. [10] shows the hardware setup for our
example. At the top level, it shows a TurtleBot 4 robot connected via Wireless
LAN (WLAN) to a companion computer with a mission processor modeled as
a single core Intel Xeon, which allows for complex software components such as
the MAPLE-K loop to be executed on a more powerful system, while making
use of smaller and less powerful robot hardware. The TurtleBot 4 contains a
Raspberry Pi 4B, modeled as four Cortex-A72 processors (quad core) and a
firmware processor, internally connected via WLAN. The processors, depicted as
an AADL processor (cuboid), are able to execute software elements (threads) and
can communicate, for instance, via a wireless connection, depicted as an AADL

* Full AADL textual models for this and other components can be found in [2]

14 J. Baxter et al.

/

f PhysicalArchitecture::Companion_compute.impl

HardwareParts::Xeon_solo

DPower / \

BusAcces_1 BusAcces_1

AN

/ PhysicalArchitecture::Turtlebot_compute.impl

HardwareParts::Cortex_A72 quad.}. HardwareParts::Firmware

Power
Power

BusAcces_1
BusAcces_1

>
4 BusAcces é
7
_ () /

Fig. 10: Graphical representation of compute hardware of the Turtlebot 4.

bus (double sided arrow). The Raspberry Pi executes the software onboard the
Turtlebot, while the firmware processor executes built-in code for managing the
hardware components of the robot.

We can bind the software components to the appropriate physical (execution)
hardware using property associations of one of two categories:

— Actual Processor Binding: fixed processor allocation
— Allowed Processor Binding: flexible processor allocation, which per-
mits scheduling tools to assign the threads to processors.

Binding properties are added to the implementation model, including the appli-
cation model (components like that in Fig. [8) and the hardware model (such as
that in Fig. as subcomponents. From them, different analyses can be per-
formed using OSATE, such as Resource budget and allocation analysis or bus
load analysis, for instance. These are complementary to the analyses that can
be carried out using RoboChart, which focus on behavioural properties.

From the implementation model, interface and infrastructure code can be
generated for integration of MAPLE-K components in existing software plat-
forms. Ours is customised for trustworthy self-adaptive robotics applications.

This auto-generation step does not generate code for the software compo-
nent’s application logic; it only generates infrastructure code for “gluing together”
the software components within a given software architecture. Code for the ap-
plication logic can be generated from RoboChart.

For the infrastructure code, our platform supports multiple programming
languages, including Python and C/C++, as well as various interfacing proto-
cols, such as MQTT, Redis, and ROS2. We also support containerisation (that is,
Docker), ensuring consistent behaviour across different execution environments,

Formal Architectural Patterns for Adaptive Robotic Software 15

RoboChart
modulele(ﬁ controller

system

Hierarchy
rules

ég state machine

process

state | thread
i behavior

e

transition

Behavior
rules

RoboChart2AADL transformation

Connection connection

rules

XVariabIe/ type data

Fig. 11: High-level view of the RoboChart2AADL transformation

regardless of the underlying hardware or OS. This is facilitated by the following
AADL extension points:

— Programming language property: AADL processes can be annotated to
indicate which programming language will be used for the component.

— Containerisation property: AADL processes can be annotated to indicate
the use of containerisation.

— Interface protocol property: AADL connections can be annotated to
specify the interface protoco

6 From RoboChart to AADL

Our work integrates formal verification in an MDE process based on the RoboChart
and AADL languages. In this section, we define the RoboChart2AADL model
transformation from a RoboChart model into an AADL model based on the
proposed RoboChart (Section [4)) and AADL (Section [5) MAPLE-K encodings.
Model transformation plays a crucial role in MDE for modeling, optimisa-
tion, and analysis. It involves generating a target model using information from
a source model. The RoboChart2AADL transformation is described by corre-
spondence rules between RoboChart and AADL, shown graphically in Fig. [I1}
Overall, a RoboChart module or controller is mapped to an AADL system,
containing a collection of AADL processes: one for each RoboChart state ma-
chine (hierarchy rules in Fig. . For each machine, the behaviour rules from

5 Each MAPLE-K component can have different interface protocols.

16 J. Baxter et al.

Fig. are applied exhaustively. With the connection rules, each RoboChart
state is mapped to an AADL mode, with the internal behaviour of the RoboChart
state, defined by actions or further machines for composite states, represented by
an AADL thread executed within the corresponding AADL mode. RoboChart
transitions are mapped to AADL mode transitions and RoboChart connections
to AADL connections. Finally, RoboChart events correspond to ports in AADL,
and variables to data. In what follows, we present the details of these mappings.

Hierarchy rules These are concerned with the RoboChart module, controller,
and state machine elements. In RoboChart, a module is a top-level element that
encapsulates a robotic platform and controllers.

When translated, a RoboChart module is mapped to an AADL system,
with each controller mapped to a nested system. Each state machine within
a RoboChart controller is represented as an AADL process, which serves as the
execution environment for the corresponding functionality. This mapping ensures
that the hierarchical structure of RoboChart model is preserved in the AADL
model, preserving the system-level architecture and component interactions.

Behaviour rules The behaviour rules concern the RoboChart state element.

In RoboChart, a state serves a dual role within the state machine. First, it
represents a primary component of the state machine, namely the state itself,
and second, it encapsulates the behaviour executed by that state. To align with
AADL, this dual representation is mapped accordingly.

The RoboChart state directly maps to an AADL mode, representing the
static aspect of the state and capturing its presence within the component. On
the other hand, the dynamic behaviour associated with the RoboChart state is
mapped to an AADL thread. This thread is executed within the corresponding
AADL mode and defines the internal behaviour during the mode’s execution.
Thus, we create a clear and accurate representation in the AADL model while
preserving the essential semantics of the RoboChart state machine.

Connection rules The connection rules are concerned with the RoboChart
connection, event and variable elements. In RoboChart, events serve two pri-
mary purposes: they can be used as triggers for transitions between RoboChart
states and they can carry data between RoboChart controllers and state ma-
chines. RoboChart connections between events define how components within
the system communicate and transition between different operational modes.

When translating to AADL, the transitions triggered by events in RoboChart
are mapped onto AADL mode transitions. They facilitate the dynamic switching
between AADL modes, reflecting the event-driven behaviour of RoboChart state
transitions. For RoboChart transitions without event triggers, events are added
to trigger the corresponding AADL transitions.

RoboChart connections link state machines and controllers via events. They
are mapped to various types of AADL ports, depending on what is communi-
cated. An AADL event port is used for event-based communication without data

Formal Architectural Patterns for Adaptive Robotic Software 17

Fig. 12: The TurtleBot 4 navigating past obstacles with LiDAR occlusion

exchange. An AADL data port is used for data-based communications. Finally,
an AADL event data port handles both event signaling and data transmission.

Lastly, variables and types in RoboChart, which represent information ma-
nipulated in states and transitions, are directly mapped onto AADL data. The
flow of data between components is represented using connections between AADL
data ports, as said above. This mapping ensures that the data structure and flow
within RoboChart are accurately reflected in the AADL model.

7 Architecture deployment experience

To demonstrate our work, we present our experience implementing our self-
adaptive robot using a TurtleBot 4 in a navigation scenario. The code is available
in [2]. Below, we present the scenario (Section , the implementation (Sec-
tion , and the results of tests in simulation and deployment (Section .

7.1 Self-adaptive navigation scenario description

We consider the task of navigating the robot through an environment with ob-
stacles. The TurtleBot4 robot uses the ROS2 Nav2 stack performing navigation
tasks based on data from its onboard 2D LiDAR sensor. During navigation, the
LiDAR sensor may experience occlusion from various forms of persistent de-
bris attached to the robot’s frame or the LiDAR scanner itself. This can lead
to the robot’s perception of the environment being obstructed, causing naviga-
tion decisions to be based on incomplete or outdated maps of the environment.
Adaptation is used to handle these unexpected situations, with the robot moving
around to cope with its obstructed vision.

7.2 Implementing the MAPLE-K architecture

Associated with an AADL model for an architecture based on MAPLE-K, we
have template Python code for each of the MAPLE-K components and runtime

18 J. Baxter et al.

code implementing our customised adaptive platform. The control flow of the
overall MAPLE-K architectural pattern is implemented via the adaptive plat-
form and does not need to be provided manually.

The adaptive platform provides a general-purpose communication interface
with backends for different middleware, which we can choose between based on
the hardware platform. In our example, we communicate with the TurtleBot
4 hardware platform via ROS2 messages conforming to the AADL ports of our
model corresponding to the interfaces from Fig.[7| (including receiving and repre-
senting the LIDAR data in the knowledge base). Future work will automatically
generate sketches of platform-dependent code based on the AADL ports.

The adaptive platform provides code that may even obviate the need to
program entire MAPE-K components. For our example, the Monitor and Execute
are fully handled because they just record and pass data onwards: for Analysis
in the case of the Monitor, and to the managed system, in the case of Execute.
This is a simple pattern that can be automatically generated from RoboArch
and embedded in AADL and match the adaptive platform.

Future work will integrate code generated from RoboChart into ROS2, deal-
ing with communication facilities of RoboChart using ROS publish/subscribe
mechanisms. So we have developed code for classes to represent application-
specific data types used within the knowledge base (namely the Boolean and
probabilistic LIDAR occlusion masks and the sequence of SpinCommands making
up the plan). We have also completed the template code realising the Analyse,
Plan, and Legitimate components of the MAPLE-K loop.

In the Analysis, the probabilistic LIDAR mask is updated as a sliding window
averaged over occlusions from the last n LiDAR scans to estimate the probability
of occlusion whilst the Boolean LiDAR mask gives boolean judgements. The Plan
component finds a minimal sequence of SpinCommands that allows the robot to
completely observe the occluded regions recorded in the LiDAR mask.

Finally, the managed system for our example needed to be extended to sup-
port adaptation via the SpinCommands. Our work assumes that the managed
system is adaptable, and we needed to extend it to make sure that this is the
case. We also implemented an additional ROS2 node for faking LiDAR occlu-
sions, making it possible to test adaptations in simulation.

7.3 Simulation and Validation

We have validated the RoboArch, RoboChart, and AADL MAPLE-K loop via
a combination of Gazebo simulations and physical testing on the TurtleBot 4
robot. In simulation, we have considered a range of mocked occlusion scenarios,
and then deployed the code to test against real LIDAR occlusions.

We have found that the architecture is effectively able to provide the desired
self-adaptive functionality to detect LIDAR occlusions and to modify the robot’s
movement in response. This enabled the robot to navigate effectively (at reduced
speed) in many scenarios with high degrees of LiDAR occlusion.

Physical testing revealed issues not present in simulation. First, noisy LIDAR
data can cause small transient occlusions to be detected, leading to unnecessary

Formal Architectural Patterns for Adaptive Robotic Software 19

spinning. Second, the TurtleBot 4’s LiDAR sensor driver deviates from the ROS2
specifications, making it difficult to distinguish LiDAR occlusions from objects
outside of the sensor range. Both issues are caused by the gap in existing simu-
lations of the LiDAR in ROS2, and they can solved by platform-dependent data
validation without changing code that is automatically generated.

8 Conclusions

We have presented our approach to modelling, verifying, and implementing adap-
tive robotic systems using the MAPLE-K pattern. Our work formalises MAPLE-
K in RoboArch, providing support for platform-independent architectural mod-
elling and translation to RoboChart for formal analysis and verification. The ver-
ified RoboChart model can be mapped onto an AADL model, which is enriched
to describe a particular platform for deployment. From AADL and RoboChart,
an implementation can be developed via automatic code generation.

We have demonstrated this approach using the example of a navigation robot
that can adapt to occlusions in its LIDAR sensor. In future work, we will consider
additional case studies, extending the architectural patterns as required. We
will also further develop the navigation case study to apply it to more complex
scenarios and provide for additional cases of adaptation.

Our work offers a complete pathway from architectural modelling through to
code. With the use of our software platform for implementing adaptive, trustwor-
thy systems, we can preserve the structure and concepts of RoboArch high-level
MAPLE-K (or MAPE-K as a special case) models at the code level. A major
line of future work involves using this traceability for compositional reasoning
about adaptive systems. The semantic model of RoboChart is based on CSP
process algebra [21I], whose constructs are compositional with respect to refine-
ment. Since the structure of the model’s components is preserved in the code,
we can utilise this compositionality to reason about changes in the code.

Acknowledgements Funding is provided by the Royal Academy of Engineering
under Grant No CiET1718/45, the UKRI (UK Research and Innovation Council)
under Grants No EP/R025479/1 and EP/V026801/1, and by EU Horizon project
RoboSAPIENS under agreement number 101133807.

References

1. The ASMETA toolset website, https://asmeta.github.io/

2. RoboArch, AADL and Turtlebot code (October 2024), https://drive.google.
com/file/d/1GafWyNsXQt7£X67SVENrPbNTovLXY9Tg

3. Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: Ra2dl: New flexible solution
for adaptive aadl-based control components. In: 2015 International Conference on
Pervasive and Embedded Computing and Communication Systems (PECCS). pp.
247-258 (2015)

https://asmeta.github.io/
https://drive.google.com/file/d/1GafWyNsXQt7fX67SVfNrPbNTnvLXY9Tg
https://drive.google.com/file/d/1GafWyNsXQt7fX67SVfNrPbNTnvLXY9Tg

20

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

J. Baxter et al.

Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and Analyzing MAPE-K Feed-
back Loops for Self-Adaptation. In: 2015 IEEE/ACM 10th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems. pp. 13-23.
IEEE, Florence, Italy (May 2015). https://doi.org/10.1109/SEAMS.2015.10
AS5506A, S.: Architecture analysis and design language (aadl) version 2.0. SAE:
Warrendale, PA, USA (2009)

Bagheri, M., Sirjani, M., Movaghar, A., Lee, E.A.: Coordinated actor model of self-
adaptive track-based traffic control systems. The Journal of Systems & Software
143(September 2017), 116-139 (2018). https://doi.org/10.1016/j.jss.2018.
05.034

Barnett, W., Cavalcanti, A.L.C., Miyazawa, A.: Architectural Modelling for
Robotics: RoboArch and the CorteX example. Frontiers of Robotics and AT (2022).
https://doi.org/10.3389/frobt.2022.991637

Bonasso, R.P., Firby, R.J., Gat, E., Kortenkamp, D., Miller, D.P., Slack, M.G.:
Experiences with an architecture for intelligent, reactive agents. Journal of Exper-
imental and Theoretical Artificial Intelligence 9(2-3), 237-256 (1997)

Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A con-
ceptual framework for adaptation. vol. 7212 LNCS, pp. 240-254 (2012). https:
//doi.org/10.1007/978-3-642-28872-2_17

Camilli, M., Bellettini, C., Capra, L.: A high-level petri net-based formal model
of Distributed Self-adaptive Systems (2018). https://doi.org/10.1145/3241403.
3241445

Cavalcanti, A.L.C., Barnett, W., Baxter, J., Carvalho, G., Filho, M.C., Miyazawa,
A., Ribeiro, P., Sampaio, A.C.A.: RoboStar Technology: A Roboticist’s Tool-
box for Combined Proof, Simulation, and Testing, pp. 249-293. Springer In-
ternational Publishing (2021). https://doi.org/10.1007/978-3-030-66494-7_9,
papers/CBBCFMRS21 . pdf

Feiler, P.: Open source aadl tool environment (osate). In: AADL Workshop, paris.
pp. 1-40 (2004)

Feiler, P.H., Gluch, D.P.: Model-based engineering with AADL: an introduction to
the SAE architecture analysis & design language. Addison-Wesley (2012)
Goncalves, F.S., Pereira, D., Tovar, E., Becker, L.B.: Formal verification of aadl
models using uppaal. In: 2017 VII Brazilian Symposium on Computing Systems
Engineering (SBESC). pp. 117-124. IEEE (2017)

Hadad, A.S.A., Ma, C., Ahmed, A.A.O.: Formal verification of aadl models by
event-b. IEEE Access 8, 72814-72834 (2020)

IBM: An architectural blueprint for autonomic computing. Tech. rep. (2005)
Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41-50
(Jan 2003). https://doi.org/10.1109/MC.2003. 1160055

Larsen, P.G., Ali, S., Behrens, R., Cavalcanti, A., Gomes, C., Li, G., De Meulenaere,
P., Olsen, M.L., Passalis, N., Peyrucain, T., et al.: Robotic safe adaptation in
unprecedented situations: the robosapiens project. Research Directions: Cyber-
Physical Systems 2, e4 (2024). https://doi.org/10.1017/cbp.2024.4
Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J., Woodcock,
J.C.P.: RoboChart: modelling and verification of the functional behaviour of
robotic applications. Software & Systems Modeling 18(5), 3097-3149 (2019).
https://doi.org/doi.org/10.1007/s10270-018-00710-z, rdcu.be/bh7dI
Portocarrero, J., Delicato, F., Pires, P., Batista, T.: Reference architecture for self-
adaptive management in wireless sensor networks. vol. 8779 LNAI, pp. 110-120
(2014). https://doi .org/10.1007/978-3-319-11298-5_12

https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1016/j.jss.2018.05.034
https://doi.org/10.1016/j.jss.2018.05.034
https://doi.org/10.1016/j.jss.2018.05.034
https://doi.org/10.1016/j.jss.2018.05.034
https://doi.org/10.3389/frobt.2022.991637
https://doi.org/10.3389/frobt.2022.991637
https://doi.org/10.1007/978-3-642-28872-2_17
https://doi.org/10.1007/978-3-642-28872-2_17
https://doi.org/10.1007/978-3-642-28872-2_17
https://doi.org/10.1007/978-3-642-28872-2_17
https://doi.org/10.1145/3241403.3241445
https://doi.org/10.1145/3241403.3241445
https://doi.org/10.1145/3241403.3241445
https://doi.org/10.1145/3241403.3241445
https://doi.org/10.1007/978-3-030-66494-7_9
https://doi.org/10.1007/978-3-030-66494-7_9
papers/CBBCFMRS21.pdf
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1017/cbp.2024.4
https://doi.org/10.1017/cbp.2024.4
https://doi.org/doi.org/10.1007/s10270-018-00710-z
https://doi.org/doi.org/10.1007/s10270-018-00710-z
rdcu.be/bh7dI
https://doi.org/10.1007/978-3-319-11298-5_12
https://doi.org/10.1007/978-3-319-11298-5_12

Formal Architectural Patterns for Adaptive Robotic Software 21

21. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science,
Springer (2011)

22. Weyns, D., Iftikhar, U.: ActivFORMS: A Formally Founded Model-based Approach
to Engineer Self-adaptive Systems. ACM Transactions on Software Engineering and
Methodology 32(1) (2023). https://doi.org/10.1145/3522585

23. Woodcock, J.C.P., Davies, J.: Using Z - Specification, Refinement, and Proof.
Prentice-Hall (1996)

https://doi.org/10.1145/3522585
https://doi.org/10.1145/3522585

	Formal Architectural Patterns for Adaptive Robotic Software

