Probabilistic Update Scheduling for Digital Twins:
A Semi-Markov Approach

Mikkel Schmidt Andersen
Department of Electrical and Computer Engineering
Aarhus University & Fibo Intercon A/S
Aarhus, Denmark & Videbaxk, Denmark
Email: msa@ece.au.dk & msa@fibointercon.com

Claudio Gomes

, Sophia H. Thompson

, Peter Gorm Larsen

Department of Electrical and Computer Engineering
Aarhus University
Aarhus, Denmark

Email: {claudio.gomes, sthompson, pgl} @ece.au.dk

Abstract—Digital Twins (DTs) often require maintenance
throughout their life cycles, as their Physical Twin (PT) coun-
terparts undergo maintenance and evolution. This necessitates
software updates to the DT, but when should these updates
be done? Updating the DT at the wrong time can lead to
inconsistencies between the DT and PT, as well as failures and
increased downtime.

This study investigates the practicality and usability of apply-
ing Semi-Markov Processes (SMPs) to represent the connections
and state transitions of the DT-enabled system. SMPs can be used
to calculate the probability that all components in the system
are collectively in a safe state, that is, in a state where updating
the DT would result in minimal disruption to the DT-enabled
system’s operation.

We also discuss the limitations of the approach and the future
work required to make it robust. Lastly, we present how SMPs
can be used for an industrial concrete mixer as our case study,
to remove the need for fixed maintenance intervals, which are
costly.

Index Terms—digital twins, semi-markov update scheduling,
concrete batch plant, simulation, physical twin, cyber-physical
systems, process modeling, stochastic scheduling.

I[. INTRODUCTION

Digital twins (DTs) and physical twins (PTs) have gained
attention in recent years, particularly in the context of Industry
4.0 and the Internet of Things (IoT), to improve efficiency, reli-
ability, and safety in a wide range of applications such as smart
factories, concrete mixers, and autonomous vehicles. To use
this technology, these systems often implement bidirectional
communication [1], [2].

Research on DTs has been focused on their design and
initial implementation across various application domains.
However, few studies have looked into what happens after
a DT is deployed [3]. Questions such as how a DT service is
delivered to production and how it is maintained, updated,
and improved during continuous nonstop operation remain
largely open research areas. An important requirement of DT
is that they should be consistent with the PT over its lifetime,
which means updating the DT to match the PT as it undergoes

maintenance, ages, or any other evolution. As we demonstrate
later in this work, the more complex the DT-enabled system
(PT + DT) becomes, the more challenging it is to update the
DT without causing disruptions to the PT.

Studies have mentioned different approaches for updating
models, such as iterative model-update techniques, to keep
the DT accurate as the PT ages due to wear and tear [4] and
more recent work in the context of distribution networks in the
energy sector explored how real-time update algorithms can be
used to evolve a DT model [5]. Besides this, the concept of
model updates has also been looked at in the research area on
dynamic software updating (DSU), where the desired results
are the possibility to update software at runtime by updating
individual components of the system without necessitating a
complete system shutdown [6]. However, the implementation
of DSUs is not without its challenges [7]. Particularly, services
that maintain an internal state representation, which are depen-
dent on the previous history of inputs (stateful services), can
prove challenging to update dynamically without transferring
the state.

Problem. We hypothesize that DT-enabled systems have
safe states in which updates can be carried out with mini-
mal disruption. This highlights the following challenges: (1)
recognizing that a DT-enabled system is in a safe state, (2)
determining how long that safe state lasts, and (3) predicting
when the DT-enabled system will next be in a safe state, so
that updates can be scheduled. Traditional approaches rely on
gating mechanisms that use static rules or other conditions
that assume complete knowledge of the system, such as the
software build to be successful, or carry out updates during
times when the system’s usage is minimal. For DT-enabled
systems where users are interacting with it nonstop shows that
such rules are insufficient. Here, safe states are not generally
known in advance, exhibiting instead stochastic behavior that
can be captured by probabilistic models. The results from
other application areas, such as process mining and reliability
modeling [8], [9], [10], suggest that Markov-chain-like for-

https://orcid.org/0009000686781726
https://orcid.org/0000000326929742
https://orcid.org/000900088029901X
https://orcid.org/0000000245891500

malisms can be used for modeling DT services. However,
they have not yet been applied to schedule the updates of
DT services intelligently. The need for better support in this
area is reflected in recent interviews with DT practitioners,
which highlighted issues with tool support, update cycles, and
long-term maintainability [11].

Contribution. In this study, we present a novel approach to
determine when it is probabilistically safe to deploy software
updates in DT-enabled systems. We leverage semi-Markov
processes (SMPs) to capture the probabilistic behavior of DT
services over time. We then demonstrate the effectiveness of
our approach through a concrete batch plant case study for
cement mixing. The resulting SMP-based method partially
addresses the challenges enumerated above.

II. RUNNING EXAMPLE: THE Fibo Collect CONCRETE
BATCH PLANT

As a running example, let us consider a concrete batch
plant, which is called “fibo Collect”, illustrated in fig. 1. The
plant produces ready-mix concrete by dosing and blending
four main ingredients: cement, water, stones, and chemical
admixtures. The machine operates by following a specified
recipe, which outlines the process for mixing the concrete.
The fibo Collect system is highly automated, and its main
functions are:

1) Weighing: Load cells measure each ingredient.

2) Mixing: A pan mixer ensures that the concrete is mixed

well.

3) Discharge: The fresh concrete is released into a waiting

truck for transport within 5 minutes.

i L

Fig. 1. fibo Collect — concrete batch plant — Fibo Intercon A/S

The goal of the batch plant is to produce high-quality
concrete while minimizing waste and ensuring efficient op-
eration. However, while installing and later maintaining these
machines, we encountered that they often require continuous

updates to improve the efficiency and the quality of the prod-
uct, as our internal tools evolves. During the busiest month,
a machine may be updated multiple times to support new
data collection metrics and enable more informed decisions.
We want to increase the update frequency for the machines,
without coordinating when the best time to do it is, and
risking downtime for customers’ machines. We can also add
that an update cannot simply be done at night due to the
possibility that something might go wrong at the physical
plants and would thus require a person to handle and fix
the issues. Using on-call night workers is expensive, and we
would like to minimize this possibility by determining the
most efficient time, where we have the lowest probability of
an error interfering with the machine.

Software updates to a DT service would require the machine
to be taken offline, which might disrupt ongoing operations
or render some services unavailable during critical phases,
such as mixing. It is important to determine when we can
safely go in and update the systems without fixed maintenance
intervals, as these often require coordination with different
stakeholders and are expensive both in terms of man-hours
and in lost revenue from missed customers. If we can give
a high probability that the system is in a safe state, so that
initiating a software update will not disrupt operations it would
be beneficial. By using probability, we are confident that the
most optimal time to send an update signal can be calculated,
which will ensure the update occurs when the system is in a
safe state, not mixing concrete or serving other services. An
update launched at the wrong moment can potentially cause
issues, such as interrupting the collection of data from sensors,
freezing the Human-Machine Interface (HMI), or, in the worst
case, causing downtime of the machine, thus breaching SLA
agreements.

Due to these potential issues, a typical software update
process for these systems necessitates coordination between
the owner and the software team. A scheduled time will be
allocated in which the machine will be taken offline and then
updated. They wish to determine, based on user behavior,
when we can update the machine without having to take it
offline, thereby lessening the burden on all parties and avoiding
the fixed maintenance intervals for the machine.

III. BACKGROUND AND PROBLEM FORMULATION

In this section, we provide an overview of Markov chains

. and SMPs. Our SMPs are introduced later in section IV (e.g.,

see fig. 2).

A Markov chain is a class of discrete stochastic processes
(i.e., a sequence of random variables {X,} with n € N) over
a discrete state space .S that satisfies the Markov property: the
probability of a future state depends only on the current state,
and not any previous states Mitrani [12]. If we let n € N
and let j,4q,...,4, € S, this property can be mathematically
expressed as:

P(Xn+1 =]‘Xn = inaXn—l =fin_1,-. Xy = 1)

1
= P(Xn+1 :J|Xn = Zn) M

where X, is the state of the process after n transitions, and
P(X,41 = j| X, = iy) is the probability of transitioning to
state j after the next transition, given that the process is in
state i,, after n transitions. In a Markov chain, the evolution
of the system is described by @);;(n), which is the probability
that the chain will move from state ¢ to state j, after n + 1
transitions. Relating to the above equation, we have:

Qij(n) =P(Xpp1 =3 | Xp=1i) VneN)

as described by Mitrani.

Markov chains have been applied in various fields, such
as process mining for smart homes [9], maintenance of gas
analytical systems [8], degradation-based reliability [13], and
price returns for trading stocks [14]. One limitation of Markov
chains, however, is that they have no inherent representation
of time spent in a state. To represent time, one would have
to create artificial states to emulate it. Crucially, if one has
a probability distribution for the time spent in a state, it
is cumbersome to create a Markov chain that captures this
distribution.

SMPs are an extension of the Markov chains that address
this limitation. They allow for a wait time (alternatively called
holding time or sojourn time) in a state before transitioning
to the next, which makes them better suited to model a DT
service based on observed behavior patterns. Informally, in
SMPs, when we are in state ¢ and want to transition to a new
state j, we do so by analyzing the state transition probabilities
and finding the next state. After choosing the next state j, we
then spend a random amount of time in state ¢ (the wait time)
before transitioning to state j. The waiting time can depend
on the current state and the chosen next state. An introduction
to the formalism, along with more details, is presented in [15].

An SMP consists of: a set of states, a set of transition
probabilities, and a set of wait time distributions. Compared
to Markov chains, SMPs allow the system to remain in a state
for a specific period before transitioning to the next state.
The duration and the next state are probabilistically related.
For instance, given a current and next state, the duration can
follow a uniform distribution or an exponential distribution.
The following equations formally define SMPs, adapted from
Medhi [16]. The transition function, also called the renewal
matrix, is expressed as eq. (2). In addition, the wait time
distribution is defined as:

Wij(t) = P(Thi1 — Ty <t | Xpp1 =5, Xn=14) ()

where:

o X, is the state happening at the n-th transition,

e X, is a Markov chain,

e T}, is the time of the n-th transition,

e T,11 — T, represent the wait time, in state ¢ before
transitioning to state j and

o W;;(t) is the probability that, the wait time in state 4
before transitioning to j is less than or equal to ¢, given
the process is in state 7 at transition n and the next state
is 7.

Algorithm 1 shows the pseudocode for simulating an SMP.

Algorithm 1 Semi-Markov Process Simulation Algorithm

Require: Simulation time 7', initial state ¢
1:t+0
2: state <1
3: while t < T do

4 Retrieve transition set for current state ¢
5: Extract transition probabilities
6: Sample next_state j
7 Identify selected transition @ — j
8 Sample wait time w from selected transition j
9 Save (¢, t+ h, state) to the path

10: Determine new time =t <t + h

11: Determine new state state < next_state

IV. UPDATE SCHEDULING WITH SEMI-MARKOV
PROCESSES

In this section, we describe the approach to update schedul-
ing using SMPs and how we implemented a prototype tool
to simulate the set of SMPs, with a focus on the fibo Collect
system. The tools and techniques used to combine and simu-
late SMPs will be described, along with the assumptions made
about the system.

The approach follows the idea that a DT and its associated
PT can be modeled as a set of SMPs, where each SMP
represents a distinct part of the system. In our example, as
shown in fig. 2, three SMPs were developed, where each one
represented one part of the DT-enabled system. In this case, the
PT is represented as a single entity called the Physical Twin.
Whereas the DT contains two SMPs, the ‘Anomaly Detector’
and the ‘Flow Rate Detector’. The key aspect is to model
the software components in the system that are critical to its
operations. Each SMP contains a set of transitions with their
associated probability of transitioning (transition probability)
and a function describing the wait time, which is the time we
wait before transitioning to the next state.

For our models, we had the following assumptions:

o That each system can be modeled as an SMP with

accurate transition probabilities and wait times.

o That our wait time is independent of the transition prob-

ability.
Regarding the second assumption, it is not a requirement that
the SMP are independent of each other. However, it does
reduce complexity when simulating the processes together, as
the more dependent a service is on another, the lower the
probability is that a service can discover a period in which it
can safely update within the specified time.

A. Prototype Implementation

The tool, which simulates the SMPs, is developed using
Python version 3.13. The procedure for using the tool involves
creating an SMP that describes the system. This can be done
either manually, if there is sufficient system knowledge, or as
an automated process by reviewing system logs and historical
data. In our case, the SMPs were developed based on system
domain knowledge, as shown in fig. 2. Each of the SMPs

PT & DT Services State Transitions with Probabilities and Holding Time Distributions

Physical Twin

DT services

-

Anomaly Detector Flow Rate Detector

p=0.9 p = 0.05
h ~U(1, 2) |h ~ Exp(0.5)

ra

p=1.0 p=0.9 p=10 p=038
h~U(0.5, 1) |[h~U@,4) h~U(1,2) |[h~UG3,5)
’-Mnnitnring 1 - 1.0 /-Measuring) - 1.0
h~U(L, 2) h~ U(0.5, 1)

Alert Raised | Threshold Exceeded |

4 - A

Emergency stop |

Fig. 2. Example of a set of SMPs for the fibo Collect system, and two mock DT services. p indicates the probability of transitioning to that state, and h is
the wait time distribution, which indicates the time spent in a state before the transition happens. The wait time is independent of the transition probability.

contains the associated transition probabilities, as well as the
wait time distributions for the specific state transition. The tool
uses this as input to simulate the set of SMPs simultaneously.
Below is the description of the input and the algorithm used
to simulate the SMPs, which is the safety specification of the
system.

e SMPs A list of SMPs.

e Safe states A dictionary containing the SMP name
and the list of safe states for that SMP.

Besides this, a required input for each of the SMP must contain
the following information:

e name: The name of the SMP.

e States: The states represented as a dictionary, with
the name of the state, and the probability and wait time
distributions.

The tool utilizes the required inputs and simulates all the SMPs
over a specified period, verifying whether the system is in a
safe state overall. It does this by correlating each SMP against
the specified safety specification. The simulation follows algo-
rithm 1 and aligns with the mathematical equations described
in section III.

The algorithm is as follows: To simulate the SMPs, we can
split them into three categories: (1) We select the transition
randomly, based on the available states in the SMP. (2) We
then sample the waiting time, from the distribution function,
and await that time before transitioning to the next state and (3)
We apply Monte Carlo, as we simulate outcomes of the SMPs
over a given large number of simulations N (e.g., N = 1500)
simulations, and then calculate the probability of it being safe,
by estimating the quantities from the simulations.

The main algorithm used to perform the simulation is shown
in listing 1. It is inspired by the procedure described in
[16], and implements the semi-Markov elements as defined
in eq. (3).

Sample Size Determination. We briefly sketch how to
determine IN. There are two approaches: A) NN is chosen
based on the convergence of a random variable distribution
of interest; B) N is chosen based on the desired level of
confidence and precision. Approach 1 entails stopping new
simulations when, for instance, the maximum duration of a
safe state (as in fig. 4) stabilizes. Approach B works by
formulating a Bernoulli process (X;), whose possible out-
comes are success or failure (i.e., X; 1 or 0). Then,
X = va X; ~ Binomial(n, p), and approach B focuses on
finding an NV such that Pr (|p — p| < E) ~ 1 — o, where p is
estimated from the simulations, E is the precision, and 1 — «
is the confidence level. We then determine N by applying the
Central Limit Theorem and using the properties of the normal
distribution.

while t < simulation_time:

Get the current object transitions

state_obj = chain.states[state]
transitions = state_obj.transitions

ible next states

(0_ij) Extract distributi

probs = [tr.probability for

on for po

tr in transitions]

Choose next state X_{n+1} based
next_state = np.random.choice ([tr
transitions], p=probs)

on

Q 1ij
.to_state for tr in

ntil next state (1

il j) wait timt W

{17} (t)
tr in transitions if

selected_transition next (tr for
tr.to_state == next_state)
waiting_time = selected_transition.waiting_time ()

time, leaving time state

s Sta

path.append((t, t + waiting_time, state))

Move time forward and update our current state
t += waiting_time
state = next_state

Listing 1. SMP Simulation Algorithm

B. Evaluation and Results

We evaluated our SMP based scheduling approach using
the set of processes illustrated in fig. 2. Our objective was to
assess the tools’ ability to identify safe deployment windows
and characterize the distribution of safe and unsafe system
states during update procedures, such that an update would
not be performed at the wrong time. In fig. 3, we show
the concept of safe deployment windows within a typical
operational timeline, as a plot of states. The tool predicts these
windows by simulating the system’s state evolution over 30
minutes, taking into account the wait time distributions and
transition probabilities defined in the SMPs. Operators can
use these predictions to plan updates during periods with a
high probability of safety, minimizing the risk of disruption.
To validate the SMPs, we ran simulations from different initial

Physical Twin State Timeline

states
= Washing
Mixing
m Emergency stop
idle

Anomaly Detector State Timeline

states
idle
== Monitoring

Flow Rate Detector State Timeline

Identified Safe Update Windows

Fig. 3. Diagram illustrating the safe deployment window concept. The
simulated system can be seen in fig. 2 and consists of three processes, where
the safe states are idle and monitoring. This is one simulation of the system.

system configurations. We can observe that when starting from
a safe system state, the results shown in fig. 4 indicate that the
system remains in a safe configuration for significant periods,
with multiple windows available for update deployment.

Max Observed Safe Duration Distribution

5000

2 3000

£ 2000
1000

000 025 050 075 1.00 125 150 175 2.00
Max duration of continuous safety

Future Safe Start Time Distribution

40000 -=- Avg = 0.88 min
- +10=4.93 min

-10 = -3.18 min
. 30000

20000

Frequenc)

10000

15
Minutes until next safe window

Fig. 4. Safe state durations based on 1500 simulations. Most runs estimate a
high probability of the system remaining safe for over 1 minute—the target
threshold.

The histogram in the figure shows the duration of the
simulated safe states, highlighting that safe windows are

sufficiently frequent for the running example. This supports
the tool’s applicability in real-time or near-real-time industrial
settings. However, further tests are needed on a real system to
validate its applicability in a real-world setting.

We also experimented with system configurations where the
system started from an unsafe initial state. It can be seen on
fig. 5 that the system has a high spread, making it difficult
to determine when a safe update period should be conducted.
However, it can still be used as a reasonable estimate for when
the next update window period is likely to occur. Overall,

Max Observed Safe Duration Distribution

8000
--- Avg =076 min

+10= 124 min
6000 - -l0=027min
3

£ 4000

0.00 025 050 075 100 125 150 175 2.00
Max duration of continuous safety

Fre

Future Safe Start Time Distribution

3000
——- Avg = 1414 min

2500 +10 = 21.72 min
- 0= 656 min
5 2000
2 1500
z

= 1000

Minutes until next safe window

Fig. 5. Safe state durations based on 1500 simulations. Most runs estimate
a low probability of the system remaining safe for over 1 minute—the target
threshold.

the results indicate that SMPs can help operators by applying
a data-driven approach to update scheduling in DTs, thereby
reducing the risk of unintended service disruptions for systems
that can run nonstop, while still allowing for small windows
of opportunity for high-probability deployment without risking
downtime.

C. DISCUSSION

We will discuss the potential of using SMPs to support safe
update scheduling in DTs. However, our current findings are
based solely on simulation studies. Future work will trial the
approach on the running example that inspired us to model
the DT services.

The set of SMPs evaluated in this paper was designed, to the
best of our ability, to match the expected behavior of the real
system. However, it has not yet been validated against the case
study, nor was it created from historical state logs. Although
the results provide insights into the feasibility and potential
benefits, several important considerations and limitations must
be addressed before the approach can be deployed in a live
industrial setting. We will therefore reflect on the implications
of our simulation results, discuss the representativeness of our
models, and identify the limitations and practical challenges
associated with them.

The simulation results can be interpreted in two ways. As
concluded in the earlier section, fig. 4 shows that when the
initial state is safe, there is a high probability that the system
will remain safe over time, provided the wait time distribution
allows sufficient time before transitioning. However, when the
state is unsafe, as shown in fig. 5, it indicates that the timing
of the following safe period is almost random and can be

difficult to derive any value from. Consequently, our tooling
should estimate an approximate probability for the next safe
state window, allowing an update to be scheduled accordingly.
However, this can be challenging based on current results.

As mentioned above, The SMPs were not derived from his-
torical data, but were constructed based on our understanding
of the PT, and two mock DT services. This limitation currently
restricts our ability to conduct a practical test, which is why
future work prioritizes extending the tooling to generate SMPs
directly from data stored in a time-series database. Besides
this, the formalism of SMP allows it to be used for more
complex systems, however for our needs the attribution of
how the waiting time, affects the transition probability matrix
was relaxed such that, we are allowed to sample the next state,
and then determine the wait time needed in the current state
before transitioning.

V. RELATED WORK

The management and orchestration of DT's in cyber-physical
systems (CPS) have received increased attention in recent
years, particularly in scenarios that require runtime verifica-
tion, adaptation, and safe software updates.

Kamburjan et al. [17] propose an automated method for
declarative lifecycle management in DTs to address the shifts
between the different lifecycle stages for the PT. These
methods utilize descriptions of the lifecycle of components
and their associated DT parts, leveraging knowledge graphs
and ontologies. The authors mentioned that reflecting the
lifecycle evolution is challenging. In addition, Aissat et al.
[18] mentioned that the underlying complex systems of a DT
must be continuously updated to meet user requirements and
to enable the system to improve over time. They presented
the tool Juno-OPS, which is a DevOps framework to support
the built assets from DTs and can help engineers without
DevOps knowledge to leverage best practices and deploy faster
to production. However, they did not mention how to ensure
that a service is ready to be taken offline for updates, but they
implemented rigorous testing and quality assurance techniques
in their pipelines. SMPs can complement this by introducing
a probability check between the last layer, right before it is
deployed in the production environment. In addition to these
studies, SMPs have been applied in various fields, such as
[9], which utilizes semi-Markov models for process mining
in smart homes to detect anomalies. The results indicate that
this approach fits well with smart home data. The work by [8]
focused on developing a semi-Markov model of a complex
gas analytical system, enabling them to create an optimal
maintenance strategy to reduce the cost of maintenance for the
airspace industry, which further implies that SMPs are well-
suited for update scheduling in DTs.

VI. CONCLUSION AND FUTURE WORK

This paper presents our current work on developing a tool to
determine the optimal time for deploying updates to either DT
services or the PT software. Our evaluation revealed that as
the number of modeled states increased, the time available for

safe updates decreased, resulting in a reduction in the number
of safe update windows. The starting states from the different
SMPs also significantly impacted the available safe update
windows, indicating that the more SMPs there are to simulate,
the harder it is to obtain a safe update window. This challenge
can be addressed by decomposing the SMP into sub-SMPs,
allowing each to focus on the components that matter most
for specific updates. In terms of tool development, the current
prototype supports the manual specification of SMPs and
therefore relies on the user to define the safe states and model
the DT and PT as SMPs. The evaluation demonstrated that this
approach can be effective in reducing the risk of a disruptive
update. However, several limitations remain. Additionally, the
accuracy of the update recommendations is directly dependent
on the quality of the SMPs, especially the accuracy of the wait
time distributions and transition probabilities.

Future work will focus on further developing the tool to
generate SMPs from historical state logs automatically by
applying state-of-the-art techniques, such as [19] to discover
SMPs from data. We also aim to implement a real-time
monitoring component that uses the generated SMPs to gate
and apply updates at optimal times, based on probabilistic
safety estimates. Here it is important to stress that a state
is considered safe when it satisfies the safety specification
defined for the system, as mentioned in section Section IV-A.
The probability that we estimate is the likelihood of remaining
safe for a target duration n. For example, an update may only
be scheduled if there is at least a 95% probability of the system
staying safe for the next 5 minutes. Finally, we aim to integrate
the complete tool chain in the case study.

ACKNOWLEDGMENT

This work was supported by the Innovation Fund Denmark
under the project Digital Twin Deployment for Enhanced
Autonomy and Scalability of Ready-Mix Concrete Batch Plants

REFERENCES

[1] J. Fitzgerald, C. Gomes, and P. G. Larsen, The Engineering of Digital
Twins. Springer, 2024.

[2] M. Javaid, A. Haleem, and R. Suman, “Digital twin applications toward
industry 4.0: A review,” Cognitive Robotics, vol. 3, pp. 71-92, 2023.

[3] B. Zhang, G. Ding, Q. Zheng, K. Zhang, and S. Qin, “Iterative updating
of digital twin for equipment: Progress, challenges, and trends,” 10 2024.

[4] W. Kim, S. Kim, J. Jeong, H. Kim, H. Lee, and B. D. Youn, “Digital
twin approach for on-load tap changers using data-driven dynamic
model updating and optimization-based operating condition estimation,”
Mechanical Systems and Signal Processing, vol. 181, p. 109471, 2022.

[5] J. Shen, L. Hu, Y. Yang, Y. Li, and P. Lou, “Real-time update algorithms
for digital twin models of distribution network equipment under internet
of things and optical imaging technology,” Scientific reports, vol. 15, p.
5910, 12 2025.

[6] M. Wahler, S. Richter, and M. Oriol, “Dynamic software updates for
real-time systems,” in Proceedings of the 2nd International Workshop
on Hot Topics in Software Upgrades. Orlando Florida: ACM,
Oct. 2009, pp. 1-6. [Online]. Available: https://dl.acm.org/doi/10.1145/
1656437.1656440

[7]1 D. Mlinarié, “Challenges in Dynamic Software Updating,” vol. 9, no. 1.
[Online]. Available: https://doi.org/10.18421/TEM91-17

[8] V. Bobkov, O. Kanishchev, and I. Men’Shova, “The semi-markov model
of operation and maintenance of gas analytical system,” in Journal of
Physics: Conference Series, vol. 1925. 10OP Publishing Ltd, 6 2021.

https://dl.acm.org/doi/10.1145/1656437.1656440
https://dl.acm.org/doi/10.1145/1656437.1656440
https://doi.org/10.18421/TEM91-17

[9]
(10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

S. McClean and L. Yang, “Semi-markov models for process mining in
smart homes,” Mathematics, vol. 11, 12 2023.

A. Swiderski, A. Borucka, M. Grzelak, and L. Gil, “Evaluation of
machinery readiness using semi-markov processes,” Applied Sciences
(Switzerland), vol. 10, 2 2020.

H. M. Muctadir, D. A. Manrique Negrin, R. Gunasekaran, L. Cleophas,
M. van den Brand, and B. R. Haverkort, “Current trends in digital twin
development, maintenance, and operation: an interview study,” Software
and Systems Modeling, 10 2024.

1. Mitrani, Probabilistic modelling. USA: Cambridge University Press,
1998.

J. P. Kharoufeh, C. J. Solo, and M. Y. Ulukus, “Semi-markov models
for degradation-based reliability,” IIE Transactions, vol. 42, no. 8, pp.
599-612, 2010.

G. D’Amico and F. Petroni, “A semi-markov model for price returns,”
Physica A: Statistical Mechanics and its applications, vol. 391, no. 20,
pp. 48674876, 2012.

S. Ross, “- renewal theory and its applications,” in Introduction to
Probability Models (Eleventh Edition), eleventh edition ed., S. Ross, Ed.
Boston: Academic Press, 2014, pp. 409—479. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/B9780124079489000074

J. Medhi, Stochastic processes. New Academic Science Limited, 2012.
E. Kamburjan, N. Bencomo, S. L. Tapia Tarifa, and E. B. Johnsen,
“Declarative lifecycle management in digital twins,” in Proceedings
of the ACM/IEEE 27th International Conference on Model Driven
Engineering Languages and Systems, 2024, pp. 353-363.

S. Aissat, J. Beaulieu, F. Bordeleau, J. Gascon-Samson, E. A. Poirier,
and A. Motamedi, “Juno-ops: A devops framework for the engineering
of digital twins for built assets,” in Proceedings of the ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and
Systems, 2024, pp. 496-506.

A. Kalenkova, L. Mitchell, and M. Roughan, ‘“Performance analysis:
discovering semi-markov models from event logs,” IEEE Access, 2025.

https://www.sciencedirect.com/science/article/pii/B9780124079489000074
https://www.sciencedirect.com/science/article/pii/B9780124079489000074

	INTRODUCTION
	Running Example: The Fibo Collect Concrete Batch Plant
	BACKGROUND and PROBLEM FORMULATION
	Update Scheduling with Semi-Markov Processes
	Prototype Implementation
	Evaluation and Results
	DISCUSSION

	RELATED WORK
	Conclusion and Future Work
	References

